Article MagSail after Cath for J 10 16 06
AIAA-2006-8148
Theory
of Space Magnetic Sail Some Common Mistakes
and
Electrostatic MagSail*
C&R, 1310 Avenue R, #F-6,
T/F 718-339-4563, aBolonkin@juno.com,
http://Bolonkin.narod.ru
Abstract
The first reports on the УSpace Magnetic SailФ concept appeared more 30 years ago. During the period since some hundreds of research and scientific works have been published, including hundreds of research report by professors at major famous universities. The author herein shows that all these works related to Space Magnetic Sail concept are technically incorrect because their authors did not take into consideration that solar wind impinging a MagSail magnetic field creates a particle magnetic field opposed to the MagSail field. In the incorrect works, the particle magnetic field is hundreds times stronger than a MagSail magnetic field. That means all the laborious and costly computations in revealed in such technology discussions are useless: the impractical findings on sail thrust (drag), time of flight within the Solar System and speed of interstellar trips are essentially worthless working data! The author reveals the correct equations for any estimated performance of a Magnetic Sail as well as a new type of Magnetic Sail (without a matter ring).
аа Key words: magnetic sail, theory of
MagSail, space magnetic sail, Electrostatic MagSail .
*Presented as paper
AIAA-2006-8148 to 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies
Conference, 6 - 9 Nov 2006 National
Convention Centre, Canberra, Australia. Published in http://arxiv.orgаа
http://arxiv.org/ftp/physics/papers/0701/0701060.pdf
.
Introduction
The idea of utilizing the magnetic field to aggregate matter in space, harnessing a drag from solar wind or receiving a thrust from an Earth- charged particle beam is old. The MagSail is a gigantic (more than 50 ‑100 km in radius) super-conductive ring located in outer space that produces a magnetic field and reflects the impinging solar wind, or a particle beamed from the Earth. Unfortunately, the currently used theory for computation of drag from solar wind or thrust from particle beam is complex. The magnetic field changes in widely diapason, every particle moves in its own trajectory and it is exquisitely difficult to accurately estimate a summary drag. Over the years, many space researchers have offered many equations for drag estimation that give remarkably different results. However, no known equations take into proper consideration the magnetic field of particles moved in a ring-shaped magnetic field. These particles create their own magnetic field that is OPPOSED to the MagSailТs magnetic field. This magnetic field of charged particles can be strongerЧby hundreds timesЧthan a ring field. It can fully deactivate the MagSail magnetic field.
The
simplest computation shows a profound mistake in all known works. The reader
can find part of themа
in а[1]-[38], (see also
[39]-[40]).
а Take the typical MagSail ring: radius of ring
is R = 50 km, electric current I =104 A. The intensity H1 of magnetic field in
center of ring is
аааааааааааааааааааааааааааааааааааааааааааааа ,ааааааааааааааааааааааааааааааааааааааааааа (1)
This
intensity is approximately same of the ring as well as near it. We assume in
our subsequent computation that H1
= constant.
а Take
the typical solar wind flows into ring at distance from Sun 1 AU (the EarthТs
orbit about its primary star) with average wind speed V = 400 km/s, and density N
= 107 1/m3. The solar wind contains electrons and
protons. Within the ring magnetic field they rotate under Lawrence force and
produce their own magnetic field that is OPPOSED to the ring magnetic field,
decreases it (diamagnetic property), and pumps the ring magnetic energy into
energy of its own magnetic field (summary energy is constant). This magnetic
field from the rotated electrons (we here neglect the additional magnetic field
from the rotated protons) can be estimated by equations (we consider only
electrons into the ring):
аааааааааааааааааааааааааааааааааа аааааааааааааааааааааааааааааааааа а,аааааааааааааааааааааааааааааааааааа (2)
where H2 is magneticа intensity from rotated solar wind electrons,
A/m; r is electron gyro-radius, m; i is electric
currency of solar wind electrons, A; V
= 400 km/s is average solar wind speed, B1
is magnetic intensity, T; m0 = 4p10‑7 is magnetic
constant.
а Substituting
our values, we received r = 18.2 m; i = 5024 A; H2 = 276 A/m. The last
magnitude shows that the magnetic intensity of solar wind electrons is in 2760
times greater (H2 >>
H1) than the ring magnetic
intensity of MagSail! It is correct for any charged beam that interacts with
the MagSail. That means all research and computation (without an influence the
solar wind or charged beam into MagSail) is wrong and basically worthless for
all practical space exploration and exploitation applications.
а How
can it happen that hundreds of researchers, professors at famous universities,
audiences of specialists, members of scientific Conferences and Congresses,
editors of scientific journals: "Journal of Propulsion and Power"
(Editor V. Yang); Journal "Spacecraft and Rockets", (Editor V. Zoby),
paid so little attention to student-level mistakes in many scientific
publications and public presentations to scientific conferences?а More over, the director NASA Institute for
Advanced Concepts (NIAC) Mr. R. Cassanova awarded (totaling more than $1
million dollars!) to his close associate, professor R.M.
Winglee (
It is still happening because popular textbook authors continue to consider the interaction between the strong magnetic field of particle accelerators and small amount of charged particles where we can neglect the influence of charged particles in magnetic field of the accelerator. With MagSailТs, we have the opposed situation: the weak ring magnetic field and strong magnetic field of solar sail or charged beam.
Theory
Below, the author suggests the correct theory of MagSail operation, which takes into consideration the influence of the solar wind flow into the ring magnetic field and allows an estimation of the drag of MagSail.
Let us to
take the equations (2) in form:
аааааааааааааааааааааааааааааааааааааааааааааа ,ааааааааа аааааааааааааааааааааа (3)
where mp
is mass of positive particle, for proton mp=1.67´10‑27, kg; R2 is rotate radius of
positive particles (protons for Solar Wind), m; R3 is capture radius of positive particles, m.
Notice
particularly the last equation (3). In this equation, the active is summary
magnetic intensity B!
For getting the maximum solar wind drag the
turn radius of heavy particles must be 90 degrees. Assume R=R1=R2=R3. We have 6 equations (3) and 6 unknown values. From
set equations (3) we receive the estimation of the radius efficiency R:
ааааааааааа ааааааааааааааааааааааааааааааааааааааааааа ,ааааааааааааааааааа аааааааааааааааааааааааааааа (4)
аFrom (4) we get minimal ring electric currency
аааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааа ,аааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааа (5)
For average
solar wind speed V = 400 km/s the
minimal ring electric currency is I =
6.65´103 A.
The solar
wing drag, D, equals approximately
аааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааа .ааааа аааааааааааааааааааааааааааааааааааааааааааааааааа (6)аааа
Results of
computation are presented in figures 1 ‑ 2. Look you attention: for
receiving good drag we need in high electric current. For typical current I = 104 A (I = 10 kA) the efficiency radius R and drag D are small.
аааааааааааааааааааааааааааааааааа Fig.1. Radius efficiency of MagSail via
ring electric current
Fig. 2. Drag of MagSail via ring electric current at
distance from Sun equals 1 Astronomical Unit.
New
Electrostatic MagSail (
аThe
conventional MagSail with super-conductive ring has big drawbacks:
The author offers new Electrostatic MagSail (EMS). The innovation includes the central positive charged small ball and a negative electronic equal density ring rotated around the ball (fig.3).
Fig.3. Electrostatic MagSail. Notations: 1 - Spaceship; 2 -
Positive charged ball; 3 - electrical
ring; 4 -
solar wind; 5 -
The
suggested
1)
No
heavy super-conductive large ring.
2)
No
cooling system for ring is required.
3)
Electronic
ring is safe.
4)
The
thrust (ring radius) easy changes by changing of ball charge.
Electrostatic MagSail Theory
Let us consider a method of estimation of electronic ring magnetic intensity in the electronic ringТs center [2]. We will take into consideration a repulsion of electrons from electron ring (blocking the ball charge by the electronic ring) and relativistic speed of electrons. We will not take into consideration diamagnetic property of solar wind or charged beam because our purpose here is only to find the magnetic intensity from electronic ring. The blocking the MagSail magnetic field by the particles flow the reader find in previous section (above). We also neglect the radiation of rotary electronic ring because the ring is right circle, has constant density and that does not emit synchronous radiation (this assumption needs further research. Synchronous radiation appears when electrons rotate in outer magnetic field, the electron ring is unclosed or has non-constant density. In our case the ring electric and magnetic fields are constant and not emit energy in outer space).
From
equilibrium of the centrifugal and attraction forces we have
аааааааааааааааааааааааааааааааааа ааааааааааааааааааааааа а ааааааааааааааааааааааааааааа ааааааааааа ааааааааааа (7)
where M is mass of electron ring, kg; Ve is
speed of electrons, m/s; R is ring
radius, m; k = 9´109 is electrostatic constant; Q1 is positive charge of the
central ball, C; Q2 is
negative charge of the electron ring, C; me
is mass of electron, kg; q = 1.6´10‑19 is electron charge, C.
аThe best relation between Q1 and Q2
is Q1 = 2Q2. Substitute this value
into (7) we receive
ааааааааааааааааааааааа аааааааааааааааааааааааааааааааааа а ,ааааааааааа ааааааааааа ааааааааааа (8)
where I is ring electric currency, A; H is magnetic intensity, A/m; B is magnetic intensity, T; m0 = 4p10‑7 is magnetic
constant.
аа Substitute the previous Eqs. (8) in the last equation (8) for B and use the formula for relativistic electron mass
аааааааааааааааааааааааааааааааааа ,аааааааааааааааа ааааааааааааааааааааааа (9)
where c = 3´108 m/s is light speed; me0 = 9.11´10‑31 kg is electron mass at Ve =
0.а
аLet us to add formula for estimation charge
and radius of ball and substitute the known values into last equation (9). We
received the final equations for estimation of MagSail size:
аааааааааааааааааааааааааааааааааааааааааааааааааааааааааа а,ааааааааааа аааааааааааааааааааааааааааааааааа (10)
where a is radius of ball, m; E0 is safety electric
intensity at ball surface, V/m.
а If the magnetic intensity into ring is
constant, we can estimate the energy needed for starting of ring:
ааааааааааа ааааааааааа ааааааааааааааааааааааа ,аааааааа ааааааааааааааааааааааааааааа аааа (11)
where F is magnetic flux, Wb: L is ring inductance, Henry; S
is ring area, m2; final equation in (11) W is energy, J. For conventional ring of MagSail having R = 50 km and I = 104 A the W =
5´106 J.ааааааааа
а The Eqs. (7) ‑
(11) allow to find magnetic intensity of MagSail for given ring radius and
electron speed (without solar wind or plasma beam), charge and radius of ball
for given electrostatic ball intensity, energy of rotate ring, but they do not
permit to estimate a MagSail drag. We can estimate drag of conventional MagSail
(see section above), to compute the drag of electrostatic sail offered by
author in [3] Chapter 18, but unfortunately we cannot to estimate for the drag
ааа аааааааааааааааааааааааааааааааааааааааааааааааааааааа Acknowledgement
аThe author wishes to acknowledge R.B. Cathcart
for helping to correct the authorТs English.
References
(see
some Bolonkin's articles in Internet:
http://Bolonkin.narod.ru/p65.htm and in http://arxiv.org , search
"Bolonkin")
1-38
(respectively).
Manuscripts about MagSail published or presented to AIAA Conferences: а(1)Winglee
R.,M., et al. (4 co-authors), "Mini-Magnetospheric
Plasma Propulsion. Tapping the Energy of the Solar Wing for Spacecraft
Propulsion", Journal of Geophysical Reseach. Vol. 105, No. 6.,
2000. (2) AIAA-2006-5257, (3) AIAA-2006-769 (4 coauthors), (4) JSP 2006, Vol.
43, no. 3, (667-672), (5) AIC-05-C4.6.07,аа
(6) AIAA-2005-4463 (6 coauthors), (7) AIAA-2005-4791, (8) AIAA-2005-4461,
(9) AIAA-2004-3502 (7 co-authors), (10) AIAA-2003-4292 (8 co-authors), (11) IAC-03-5.6.06,
(12) AIAA-2003-4886, (13) AIAA-2003-4292, (14) AIAA-2003-6201, (15) AIAA-2003-5226,
(16) AIAA-2003-5227, (17)"Journal Propulsion and Power (JPP)" 2003,
Vol.19, no 6 (1129-1134), (18) JPP, vol.20, No 4 (763-764), (19) JPP, vol.21,
No. 5, 2005 (853-861)(4 co-authors), (20) AIAA-2004-3706, (21) AIAA-2001-840, (22)
AIAA-2001-3517, (23) AIAA-1998-3403, (24) AIAA-1997-3072,а (25) AIAA-1997-3208, (26) AIAA-1997-2792а (3 co-authors), (27) Journal "Spacecraft
and Rockets". 1994, Vol. 31, no 2 (342 - 344), (28) AiAA-1992-3862, (29) AIAA-1991-2538,
(30) AIAA-1991-3352, (35) AIAA-1990-2367, (31) AIAA-1990-1997 (6 co-authors), (32)
AIAA-1990-3799, (33) AIAA-1989-2861, (34) JSR 1991, Vol. 28, no.2, (197-203), (35)
AIAA-1990-1997, (36) AIAA-1990-2367, (37) AIAA-1990-3799, (38) AIAA-1989-2941,
39. Bolonkin A.A., "A Space
Motor Using Solar Wind Energy (Magnetic Particle Sail)", IAF-0615. The World Space Congress, 28 August ‑
40.
Bolonkin A.A., Non-Rocket Space Launch and Flight, Elsevier,
41. GO TO:
http://www/geocities.com/auditing.science/а orа
http://auditing-science.narod.ru .
42. GO TO:
http://NASA-NIAC.narod.ru .
43. Johnson A., Space Research:
Organizing for Economical Efficiency. Presented as
AIAA-2006-7224 by Conference "Space-2006", 19-21 September 2006,